524288-word × 8-bit High Speed CMOS Static RAM

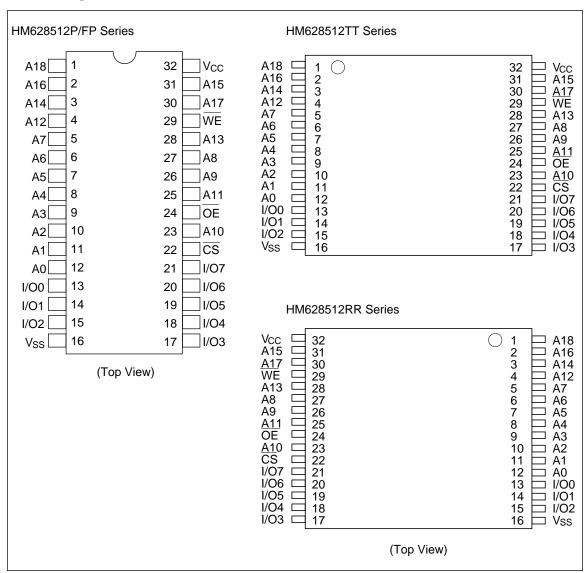
HITACHI

Rev. 5.0 Nov. 23, 1994

The Hitachi HM628512 is a 4M-bit static RAM organized 524288-word \times 8-bit. It realizes higher density, higher performance and low power consumption by employing 0.5 μ m Hi-CMOS process technology. The device, packaged in a 525-mil SOP (foot print pitch width) or 400-mil TSOP TYPE II or 600-mil plastic DIP, is available for high density mounting. LP-version is suitable for battery back up system.

Features

- High speed: Fast access time:
 - 55/70/85/100 ns (max)
- · Low power
 - Standby: 10 μW (typ) (L/L-SL version)
 - Operation: 75 mW (typ) (f=1MHz)
- Single 5 V supply
- Completely static memory
 No clock or timing strobe required
- Equal access and cycle times
- Common data input and output: Three state output
- Directly TTL compatible: All inputs and outputs
- Capability of battery back up operation (L/L-SL version)

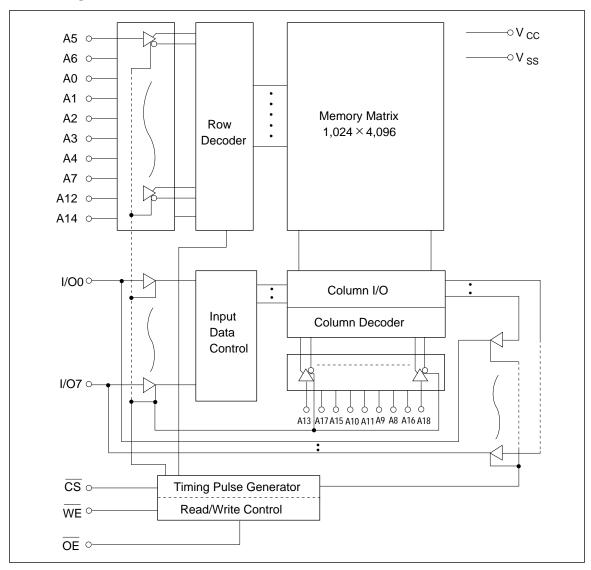


Ordering Information

Tuna Na	Access	Dealsons
Type No.	time	Package
HM628512P-5	55 ns	600-mil 32-pin
HM628512P-7	70 ns	plastic DIP
HM628512P-8	85 ns	(DP-32)
HM628512P-10	100 ns	
HM628512LP-5	55 ns	
HM628512LP-7	70 ns	
HM628512LP-8	85 ns	
HM628512LP-10	100 ns	_
HM628512LP-5SL	55 ns	
HM628512LP-7SL	70 ns	
HM628512LP-8SL	85 ns	
HM628512LP-10SL	100 ns	
HM628512FP-5	55 ns	525-mil 32-pin
HM628512FP-7	70 ns	plastic SOP
HM628512FP-8	85 ns	(FP-32D)
HM628512FP-10	100 ns	
HM628512LFP-5	55 ns	-
HM628512LFP-7	70 ns	
HM628512LFP-8	85 ns	
HM628512LFP-10	100 ns	
HM628512LFP-5SL	55 ns	-
HM628512LFP-7SL	70 ns	
HM628512LFP-8SL	85 ns	
HM628512LFP-10SL	100 ns	

Access	
time	Package
55 ns	400-mil 32-pin
70 ns	plastic TSOP II
85 ns	(TTP-32D)
100 ns	_
55 ns	
70 ns	
85 ns	
100 ns	
55 ns	400-mil 32-pin
70 ns	plastic TSOP II
85 ns	reverse
100 ns	(TTP-32DR)
55 ns	-
70 ns	
85 ns	
100 ns	
	55 ns 70 ns 85 ns 100 ns 55 ns 70 ns 85 ns 100 ns 55 ns 70 ns 85 ns 100 ns 55 ns 70 ns 85 ns

Pin Arrangement



Pin Description

Symbol	Function
A0 – A18	Address
I/O0 – I/O7	Input/output
CS	Chip select
WE	Write enable
ŌĒ	Output enable
V _{CC}	Power supply
V _{SS}	Ground

3

Block Diagram

Function Table

WE	CS	OE	Mode	V _{CC} current	Dout pin	Ref. cycle
X	Н	Χ	Not selected	I _{SB} , I _{SB1}	High-Z	_
Н	L	Н	Output disable	Icc	High-Z	_
Н	L	L	Read	I _{CC}	Dout	Read cycle
L	L	Н	Write	I _{CC}	Din	Write cycle (1)
L	L	L	Write	I _{CC}	Din	Write cycle (2)

Note: X: H or L

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage on any pin relative to V _{SS}	V_{T}	-0.5^{*1} to +7.0	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	-10 to +85	°C

Note: 1. -3.0 V for pulse half-width $\leq 30 \text{ ns}$

Recommended DC Operating Conditions (Ta = $0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5.0	5.5	V
	V_{SS}	0	0	0	V
Input high (logic 1) voltage	V_{IH}	2.2	_	6.0	V
Input low (logic 0) voltage	V _{IL}	-0.3 ^{*1}	_	0.8	V

Note: 1. -3.0 V for pulse half-width $\leq 30 \text{ ns}$

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V $\pm 10\%$, V_{SS} = 0 V)

Parameter		Symbol	Min	Typ*1	Max	Unit	Test conditions
Input leakage curre	ent	I _{LI}	_	_	1	μΑ	$Vin = V_{SS}$ to V_{CC}
Output leakage current		llol	_	_	1	μΑ	$\overline{\text{CS}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{OE}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{WE}} = \text{V}_{\text{IL}}, \text{V}_{\text{I/O}} = \text{V}_{\text{SS}} \text{ to V}_{\text{CC}}$
Operating power supply current: DC		I _{CC READ}	_	15	25	mA	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \overline{\text{WE}} = \text{V}_{\text{IH}}$ others = $\text{V}_{\text{IH}}/\text{V}_{\text{IL}}, \text{I}_{\text{I/O}} = 0 \text{ mA}$
		I _{CC WRITE}	_	20	45	mA	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \ \overline{\text{WE}} = \text{V}_{\text{IL}}$ others = $\text{V}_{\text{IH}}/\text{V}_{\text{IL}}, \ \text{I}_{\text{I/O}} = 0 \text{ mA}$
Operating power -5		I _{CC1}	_	70	100	mA	Min cycle, duty = 100%
supply current	-7	I _{CC1}	_	60	90	mA	$\overline{\text{CS}} = V_{\text{IL}}$, others = $V_{\text{IH}}/V_{\text{IL}}$
	-8/10	I _{CC1}	_	55	80	mA	$I_{I/O} = 0 \text{ mA}$
		I _{CC2}	_	15	30	mA	Cycle time = 1 μ s, duty = 100% $I_{I/O}$ = 0 mA, \overline{CS} ≤ 0.2 V V_{IH} ≥ V_{CC} - 0.2 V, V_{IL} ≤ 0.2 V
Standby power sup current: DC	ply	I _{SB}	_	1	3	mA	$\overline{\text{CS}} = V_{\text{IH}}$
Standby power sup	ply	I _{SB1}	_	0.02	2	mA	$Vin \geq 0 \ V, \ \overline{CS} \geq V_{CC} - 0.2 \ V$
current (1): DC			_	2	100 ^{*2}	μΑ	
			_	2	50*3	μΑ	_
Output low voltage		V _{OL}	_	_	0.4	V	I _{OL} = 2.1 mA
Output high voltage)	V _{OH}	2.4	_	_	V	I _{OH} = -1.0 mA

Notes: 1. Typical values are at $V_{CC} = 5.0 \text{ V}$, $T_{a} = +25^{\circ}\text{C}$ and specified loading, and not guaranteed.

- 2. This characteristics is guaranteed only for L version.
- 3. This characteristics is guaranteed only for L-SL version.

Capacitance $(Ta = 25^{\circ}C, f = 1 \text{ MHz})^{*1}$

Parameter	Symbol	Тур	Max	Unit	Test conditions
Input capacitance	Cin	_	8	pF	Vin = 0 V
Input/output capacitance	C _{I/O}	_	10	pF	V _{I/O} = 0 V

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, unless otherwise noted.)

Test Conditions

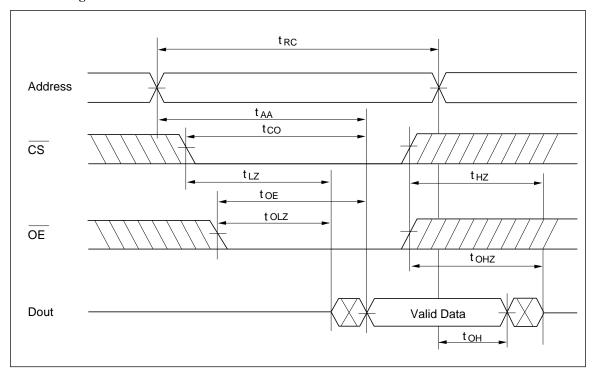
• Input pulse levels: 0.8 V to 2.4 V

• Input rise and fall times: 5 ns

• Input and output timing reference levels: 1.5 V

 • Output load: 1 TTL Gate + C_L (100 pF) (HM628512-7/8/10)

 $\begin{array}{l} 1 \ TTL \ Gate + C_L \ (50 \ pF) \\ (HM628512-5) \end{array}$


(Including scope & jig)

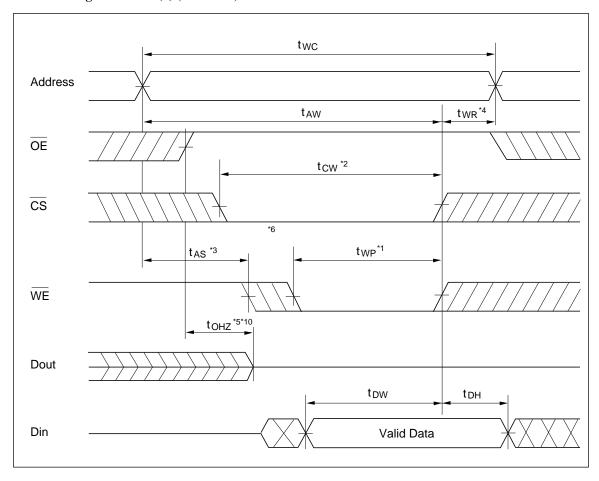
Read Cycle

Н	V	16	2	8	5	1	2
---	---	----	---	---	---	---	---

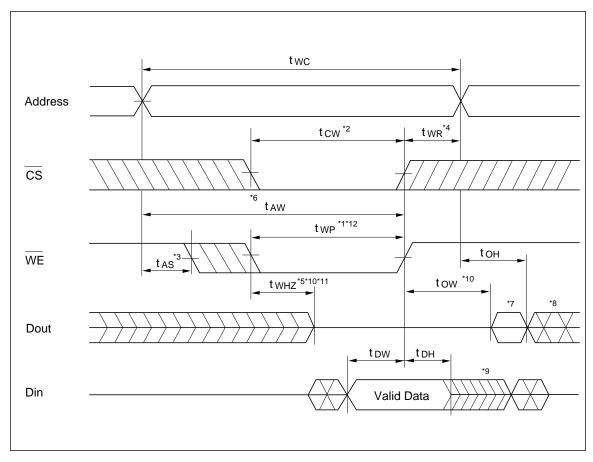
		<u>-5</u>		-7		-8		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
Read cycle time	t _{RC}	55	_	70	_	85	_	100	_	ns	
Address access time	t_{AA}	_	55	_	70	_	85	_	100	ns	
Chip select access time	t _{CO}	_	55	_	70	_	85	_	100	ns	
Output enable to output valid	t _{OE}	_	25	_	35	_	45	_	50	ns	
Chip selection to output in low-Z	t _{LZ}	10	_	10	_	10	_	10	_	ns	2, 3
Output enable to output in low-Z	t _{OLZ}	5	_	5	_	5	_	5	_	ns	2, 3
Chip deselection to output in high-Z	t _{HZ}	0	20	0	25	0	30	0	35	ns	1, 2, 3
Output disable to output in high-Z	t _{OHZ}	0	20	0	25	0	30	0	35	ns	1, 2, 3
Output hold from address change	t _{OH}	10		10	_	10	_	10		ns	

Read Timing Waveform*4

Notes: 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.


- 2. At any given temperature and voltage condition, t_{HZ} (max) is less than t_{LZ} (min).
- 3. This parameter is sampled and not 100% tested.
- 4. WE is high for read cycle.

Write Cycle

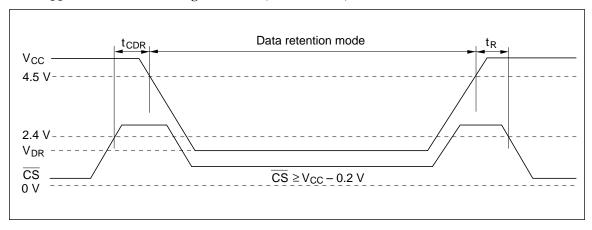

		~~	_	- 4	_
н	IVI	62	×	51	7

										-	
		-5		-7		-8		-10		_	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
Write cycle time	t _{WC}	55	_	70	_	85	_	100	_	ns	
Chip selection to end of write	t _{CW}	50	_	60	_	75	_	80	_	ns	2
Address setup time	t _{AS}	0	_	0	_	0	_	0	_	ns	3
Address valid to end of write	t _{AW}	50	_	60	_	75	_	80	_	ns	
Write pulse width	t_{WP}	40	_	50	_	55	_	60	_	ns	1, 12
Write recovery time	t_{WR}	5	_	5	_	5	_	5	_	ns	4
WE to output in high-Z	t_{WHZ}	0	20	0	25	0	30	0	35	ns	10, 11
Data to write time overlap	t _{DW}	25	_	30	_	35	_	40	_	ns	
Data hold from write time	t _{DH}	0	_	0	_	0	_	0	_	ns	
Output active from end of write	t _{OW}	5	_	5	_	5	_	5	_	ns	10

Write Timing Waveform (1) (OE Clock)

Write Timing Waveform (2) (OE Low Fixed)

Notes: 1. A write occurs during the overlap (t_{WP}) of a low \overline{CS} and a low \overline{WE} . A write begins at the later transition of \overline{CS} going low or \overline{WE} going low. A write ends at the earlier transition of \overline{CS} going high or \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write.


- 2. t_{CW} is measured from $\overline{\text{CS}}$ going low to the end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the earlier of \overline{WE} or \overline{CS} going high to the end of write cycle.
- 5. During this period, I/O pins are in the output state so that the input signals of the opposite phase to the outputs must not be applied.
- 6. If the $\overline{\text{CS}}$ low transition occurs simultaneously with the $\overline{\text{WE}}$ low transition or after the $\overline{\text{WE}}$ transition, the output remain in a high impedance state.
- 7. Dout is the same phase of the write data of this write cycle.
- 8. Dout is the read data of next address.
- 9. If $\overline{\text{CS}}$ is low during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the outputs must not be applied to them.
- 10. This parameter is sampled and not 100% tested.
- 11. t_{WHZ} is defined as the time at which the outputs acheive the open circuit conditions and is not referred to output voltage levels.
- 12. In the write cycle with $\overline{\text{OE}}$ low fixed, t_{WP} must satisfy the following equation to avoid a problem of data bus contention. t_{WP} ≥ t_{DW} min + t_{WHZ} max

Low V_{CC} **Data Retention Characteristics** ($Ta = 0 \text{ to } +70^{\circ}C$)

This characteristics is guaranteed only for L/L-SL version.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions*3
V _{CC} for data retention	V_{DR}	2	_	_	V	$\overline{\text{CS}} \ge V_{\text{CC}} - 0.2 \text{ V, Vin} \ge 0 \text{ V}$
Data retention current	I _{CCDR}	_	1*4	50 ^{*1}	μΑ	V_{CC} = 3.0 V, $Vin \ge 0 V$
		_	1 ^{*4}	15 ^{*2}	μΑ	$\overline{\text{CS}} \ge V_{\text{CC}} - 0.2 \text{ V}$
Chip deselect to data retention time	t _{CDR}	0	_	_	ns	See retention waveform
Operation recovery time	t _R	5	_	_	ms	_

Low V_{CC} Data Retention Timing Waveform ($\overline{\text{CS}}$ Controlled)

Notes: 1. For L-version and 20 μ A (max.) at Ta = 0 to 40°C.

- 2. For SL-version and 3 μ A (max.) at Ta = 0 to 40°C.
- 3. $\overline{\text{CS}}$ controls address buffer, $\overline{\text{WE}}$ buffer, $\overline{\text{OE}}$ buffer, and Din buffer. In data retention mode, Vin levels (address, $\overline{\text{WE}}$, $\overline{\text{OE}}$, I/O) can be in the high impedance state.
- 4. Typical values are at $V_{CC} = 3.0 \text{ V}$, Ta = 25°C and specified loading, and not guaranteed.